Número irracional é um número real que não pode ser obtido pela divisão de dois números inteiros, ou seja, são números reais mas não racionais. O conjunto dos números irracionais é representado pela letra I.
A primeira descoberta de um número irracional é geralmente atribuída a Hipaso de Metaponto, um seguidor de Pitágoras. Ele teria produzido uma demonstração (provavelmente geométrica) de que a raiz de 2 (ou talvez que o número de ouro) é irracional. No entanto, Pitágoras considerava que a raiz de 2 "maculava" a perfeição dos números, e portanto não poderia existir. Mas ele não conseguiu refutar os argumentos de Hipaso com a lógica, e a lenda diz que Pitágoras condenou seu seguidor ao afogamento.
A partir daí os números irracionais entraram na obscuridade, e foi só com Eudoxo de Cnido que eles voltaram a ser estudados pelos gregos. O décimo livro da série Os elementos de Euclides é dedicado à classificação de números irracionais.
Foi só em 1872 que o matemático alemão Dedekind (de 1831 a 1916) fez entrar na Aritmética, em termos rigorosos, os números irracionais que a geometria sugerira havia mais de vinte séculos.
Nenhum comentário:
Postar um comentário
Favor não comentar coisas que não tenham a ver com a matéria. Isso inclui no grupo de comentários que serão excluídos: palavras chulas, conteúdo impróprio para menores, idiotices, entre outros.